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ESTIMATING THE FILTRATION CHARACTERISTICS OF RESERVOIRS

FROM DATA OF NONSTATIONARY STUDIES OF HORIZONTAL WELLS
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Regularization methods are used to construct computational algorithms for the interpretation of re-
sults from hydrodynamic studies of horizontal wells that provide estimates of the reservoir anisotropy,
reservoir pressure, and the dependence of the in-place permeability on pressure. In contrast to graphic
analytic methods, the proposed approach does not require the identification of flow regimes.
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The problems of determining the filtration characteristics of an oil-and-gas reservoir from data of nonsta-
tionary hydrodynamic studies belong to the class of inverse problems of underground hydromechanics. A feature of
these problems is that additional information depends on the capabilities of field experiments.

Existing graphical analytic methods for interpreting pressure build-up curves obtained in experiments on
horizontal wells are based on the replacement of the fluid inflow to a horizontal wellbore by a sequence of plane
flows [1].

In the present paper, the fluid inflow to a horizontal wellbore is simulated numerically, i.e., the three-
dimensional problem of fluid filtration to a horizontal well is solved. The results of hydrodynamic studies of
horizontal wells are interpreted using a computational algorithms constructed on the basis of regularization meth-
ods. Calculations are performed of the in-place permeability as a function of pressure (a nonlinearly elastic filtration
mode), the permeability of an anisotropic reservoir, and the reservoir pressure (an elastic filtration mode). Calcu-
lations results are given.

1. Filtration processes in oil-and-gas reservoirs with pressure dependent permeability have been the subject
of active research. This is motivated by studies of the effect of well operation modes on the filtration characteristics
of reservoirs [2].

The inverse problem consists of determining the parameter s(p) = k(p)/µ for the filtration process described
by the equation

β∗
∂p

∂t
= ∇(s(p)∇p), 0 < t 6 T, (x, y, z) ∈ V (1.1)

subject to the initial condition

p(x, y, z, 0) = p0(x, y, z) (1.2)

and the boundary conditions

(s(p)∇p,n)
∣∣∣
∂V1

= 0; (1.3)

p
∣∣∣
∂V2

= pres; (1.4)
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(s(p)∇p,n)
∣∣∣
S

= q(x, y, z, t), (1.5)

where s is the oil mobility, k is the reservoir permeability, µ is the fluid dynamic viscosity, β∗ is the elastic capacity
factor of the reservoir, p is the pressure, pres is the reservoir pressure, q(x, y, z, t) is the fluid influx per unit surface
of the horizontal wellbore, V is the filtration region bounded by the outer surface ∂V = ∂V1 ∪ ∂V2, S is the surface
of the horizontal wellbore, and n is the unit normal vector.

Experimental relations between the permeability and pressure can be approximated by monotonic and convex
functions [2]. The solution of the inverse problem taking into account the constraints on the desired function
(monotonicity and convexity) is sought using the functional minimum condition

inf
s∈D

J(s), J(s) =

T∫
0

(pob(t)− pcalc(t))2 dt, (1.6)

where pob(t) and pcalc(t) are the observed and calculated well pressures, T is the time of the experiment, and D is
the set of admissible functions that satisfy the conditions

0 < smin 6 s(p) 6 smax, sp(p) > 0, spp(p) > 0, p ∈ [M1,M2], (1.7)

M1,M2, smin, smax = const > 0.

Using the small-perturbation method and the condition of stationarity of the Lagrange functional, we obtain
the following expression for the functional gradient:

(∇J, δs) = −
T∫

0

∫
V

(∇ψ,∇p)δs dV dt.

Here ψ(x, y, z, t) is a solution of the conjugate problem

−β∗ ∂ψ
∂t

= ∇(s(p)∇ψ)− (∇p, sp∇ψ), 0 6 t < T, (x, y, z) ∈ V,

ψ(x, y, z, T ) = 0, (s(p)∇ψ,n)
∣∣∣
∂V1

= 0, ψ
∣∣∣
∂V2

= 0;
(1.8)

(s(p)∇ψ,n)
∣∣∣
S

= q∗(x, y, z, t). (1.9)

Problems (1.1)–(1.5) and (1.8), (1.9) are solved numerically using the finite-difference method. The
quantity q∗(x, y, z, t) is determined by solving the problem (1.1)–(1.5). To approximate the coefficient s(p),
we consider the set of grid functions s̃ = (s0, . . . , sl, . . . , sNl

) defined at the nodes of the grid ω̄σ = {pl;
M1 = p0 < p1 < . . . < pNl

= M2, pl − pl−1 = σl}, such that for pn
ijk ∈ [pl−1, pl)

s(pn
ijk) = sl−1 +

pn
ijk − pl−1

σl
(sl − sl−1), l = 1, . . . , Nl,

where sl = s(pl); pn
ijk is the pressure in the mesh (i, j, k) of a finite-difference grid at the nth time interval.

The discrete analog of the variational problem (1.6) is the following problem of nonlinear programming:

min
s̃∈D̃

J(s̃), J(s̃) =
Nτ∑
n=1

τn(pn
ob − pn

calc)
2. (1.10)

Here τn is the step of the time grid and D̃ is the set of grid functions s̃ = (s0, . . . , sl, . . . , sNl
) that satisfy the

constraints

0 < smin 6 sl 6 smax, l = 0, . . . , Nl, sl+1 > sl, l = 0, . . . , Nl − 1,

sl+1 − sl

σl+1
>
sl − sl−1

σl
, l = 1, . . . , Nl − 1.

(1.11)

Conditions (1.11) are discrete analogs of conditions (1.7).
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The functional (1.10) is minimized subject to constraints (1.11) using the conjugate gradient projection
method [3, 4]. The calculation of the gradient of the functional in each step of the iterative process includes the
solution of the boundary-value problems (1.1)–(1.5), (1.8), and (1.9).

2. The majority of oil-and-gas reservoirs have layered structure due to the features of the sedimentation
process. In such reservoirs, the filtration characteristics in the plane of the layers differ from the properties in
a direction perpendicular to the layers. To estimate the reservoir anisotropy, we consider the following inverse
problem: it is required to determine the principal values of the tensor of the permeability coefficients kx, ky, and
kz and the reservoir pressure pres for the nonstationary filtration process described by the differential equation

µβ∗
∂p

∂t
= kx

∂2p

∂x2
+ ky

∂2p

∂y2
+ kz

∂2p

∂z2
, 0 < t 6 T, (x, y, z) ∈ V

with the initial condition

p(x, y, z, 0) = p0(x, y, z)

and the boundary conditions

(w,n)
∣∣∣
∂V1

= 0, p
∣∣∣
∂V2

= pres, −(w,n)
∣∣∣
S

= q(x, y, z, t),

where w is the filtration velocity.
The solution of the inverse problem reduces to the minimization of the functional

J(kx, ky, kz, pres) =

T∫
0

(pob(t)− pcalc(t))2 dt. (2.1)

The iterative sequence for the minimization of the functional (2.1) is constructed using the gradient descent
method [5, 6]. The gradients of the functional for the corresponding components of the permeability tensor and
reservoir pressure are calculated by the formulas

J ′kx
= −

T∫
0

∫
V

∂ψ

∂x

∂p

∂x
dV dt, J ′ky

= −
T∫

0

∫
V

∂ψ

∂y

∂p

∂y
dV dt, J ′kz

= −
T∫

0

∫
V

∂ψ

∂z

∂p

∂z
dV dt,

J ′pres
= −

T∫
0

∫
∂V2

(kx

µ

∂ψ

∂x
nx +

ky

µ

∂ψ

∂y
ny +

kz

µ

∂ψ

∂z
nz

)
dσ dt,

where the function ψ(x, y, z, t) is a solution of the corresponding conjugate problem; nx, ny, and nz are the direction
cosines of the normal to the surface ∂V2.

3. In the calculations, the filtration region V was specified as a parallelepiped. Then, ∂V1 is the roof and
base surface of the reservoir and ∂V2 are the lateral faces of the reservoir. The origin of the Cartesian coordinate
system is at the beginning of the axis of the horizontal well bore, and the x axis is directed along the axis of the
horizontal well. The influx q(x, y, z, t) in (1.5) is calculated under the assumption that the pressure on the surface
of the horizontal wellbore is constant. In this case, the production rate of the horizontal well is given by

Q =
∫
S

q(x, y, z, t) ds.

The quantity q∗(x, y, z, t) in (1.9) is calculated under the assumption that function ψ(x, y, z, t) is constant on the
surface S. In this case, ∫

S

q∗(x, y, z, t) ds = 2(pob(t)− pcalc(t)).

The right side of this expression is obtained using the condition of stationarity of the Lagrange functional.
In the calculations, the parabolic equation was approximated by an implicit finite-difference scheme. The

calculation parameters were chosen such that the results were not affected by the use of a finer grid [7].
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Fig. 1. Pressure build-up curve p(t) (a) and calculated relation s(p) (b) for a horizontal well No. 13473:
1) experiment; 2) calculation.
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Fig. 2. Scavenging curve p(t) (a) and calculated curve of s(p) (b) for horizontal well No. 1947:
1) experiment; 2) calculation.

Figure 1a shows the pressure build-up curve for horizontal well No. 13473 of the Shegurcha field. The well
production rate before shutdown is Q = 5.9 · 10−5 m3/sec, the length of the horizontal portion of the well is 204 m,
the oil viscosity is µ = 25 mPa · sec, and the reservoir thickness is 22 m. As the initial approximation of the reservoir
pressure, we used the last point on the pressure build-up curve (p0

res = 7.685 MPa). For an anisotropic reservoir
model, the following results were obtained: kx = ky = 0.041 µm2, kz = 0.123 · 10−4 µm2, and pres = 8.582 MPa; for
a homogeneous reservoir model, k = 0.014 µm2. Figure 1b shows the calculated curve of the parameter s(p).
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Figure 2a shows the pressure variation (pumping curve) for horizontal well No. 1947 of the Sirenevskoye
field. The well production rate before shutdown is Q = 9.95 · 10−5 m3/sec, the length of the horizontal portion of
the well is 310 m, the oil viscosity is µ = 25 mPa · sec, the reservoir thickness is 31 m, and the initial approximation
of the reservoir pressure is p0

res = 3.633 MPa. Figure 2b shows the calculated curve of the parameter s(p). The
calculations showed that kx = ky = 0.031 µm2, kz = 0.033 µm2, pres = 3.915 MPa; for the homogeneous reservoir
model, k = 0.039 µm2.

The proposed computational algorithms for interpreting the results of hydrodynamic studies of horizontal
wells provide estimates of the reservoir anisotropy, reservoir pressure, and pressure dependences of the filtration
characteristics of reservoirs.

This work was supported by the Foundation for Support of Domestic Science.
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